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ADDENDUM 

Conservation laws and the perturbed K d v  equation 

Russell L Herman? 
Department of Mathematics, St Lawrence University, Canton, NY 13617, USA 

Received 15 May 1990 

Abstract. In this addendum we examine the integral for the correction to the soliton position 
in the adiabatic approximation. Using the modified conservation laws for the mass and 
the energy, the general correction to the soliton position is obtained. It is easily seen that 
this correction is due to the formation of the shelf. 

1. Introduction 

The perturbation theory for the Kdv equation is well known [3-61. However, there 
have been several studies of the adiabatic effects of such perturbations on the soliton 
parameters, which arise from certain evolution equations for the associated discrete 
spectrum, using the modified conservation laws [4,7]. In such studies the effects of 
the perturbation on the soliton amplitude are easily determined. However, the correction 
to the soliton velocity, or position, for a perturbed Kdv soliton has been difficult to 
obtain in this way. 

Using a full perturbation analysis, Karpman and Maslov have turned to an approxi- 
mation to obtain the effects of the first-order correction [4]; while other studies, when 
corrected, have only resulted in the adiabatic result [2]. Namely, one begins with a 
perturbed Kdv equation of the form 

U, + 6uu, + U,,, = E P [  U ]  

and assumes that the leading-order solitary wave is given by 

where the soliton parameters 7) and 2 depend on a slow time T = E?. Then, the adiabatic 
velocity is found as [3,4] 

~ ~ = 2 7 7 ~ s e c h ~  ~ ( x - 2 )  (2) 

1 "  
fT = 4v2 +? P [  uo][4 sech' 4 + tanh 41 d 4  

477 
while the non-adiabatic velocity is [3,4] 

Z 7 = 4 7 7 - + 3  I-, P[u,,][d sech' 4+ tanh  4+tanh2 41 d4.  
477 

(3) 

(4) 

In this addendum we will show how the corrected integral in equation (4) can be 
obtained from that in equation (3 ) .  We will first use the conservation laws to obtain 
the leading-order expressions for 7, the velocity, and the amplitude of the correction 
to the solitary wave. Using similar techniques, we then obtain the correction to the 
velocity in equation (4). 
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2. Conservation laws 

It is well known that the Kdv equation possess an infinite number of conserved quantities 
[ l ,  101. We will be interested in modifying three conservation laws: 

Conservation of mass/ momentum 

u d x = O  
d t  

Conservation of energy 

A JX u 2 d x = 0  
d t  -x 

Conservation of the jirst moment 
X 

u2  dx = constant ( 7 )  

for the perturbed Kdv equation in ( l ) ,  while paying close attention to the specific case 
of a damped Kdv equation, which is given by 

U, + 6uu, + U,,, = -Tu. (8) 

Integrating ( l),  we have the modified conservation of mass/momentum: 
X d “  ; J-m U d x  = E J-, P[U] dx. 

Multiplying equation (1) by U, and integrating: 
X 

(9) 

which is the conservation of energy equation. Finally, we can multiply (1) by x and 
integrate to get the conservation equation for the first moment [8]: 

X X 

u 2 d x + E  xP[u]dx. I, 
In many of the discussions on soliton perturbations researchers turn to these 

conservation laws to explain the effects of the disturbance on the initial soliton [4, 6, 
71, or to check for the correctness of their results [5, 61. Newell refers to this as ‘the 
judicious use of the conservation laws’ [ 111 .  In fact, several researchers have relied 
on conservation laws to obtain the final results for the velocity correction [4, 91. 

The standard argument for the damped Kdv equation (8), first given by Kaup [ 5 ]  
and later rephrased [6, 111, goes as follows. If one assumes that uo is the dominant 
solution, then each side of the energy equation (10) yields to leading order 
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Thus, to first order in r equation (10) holds. However, the mass equation (9) does not 
hold, since 

S 

d IS u d x  -- -$ I-, u,dx=- '  377r 
d t  

(13) 
ic X 

P [  U ]  dx 2 -r uo d x  = -477r. 
E I_, I-, 

This mass discrepancy was first explained by Kaup [5]. Assuming that the solution 
to the perturbed equation ( 1 )  is given by the soliton ( 2 )  plus a correction, 

U = U,+ & U ]  

one finds that the correction behaves as [3] 

o <  x <  a( t )  
otherwise. 

Even though the amplitude of this first-order solution is of order r, the area under 
this shelf is large enough to explain the mass difference. Computing the contribution 
on the left side of (9) due to the shelf, using U, in equation ( 2 ) ,  u1 from equation (14), 
and the first-order perturbation results [3], 

77, = -&r 2, =4v2+ O ( & ) ,  (15) 

we obtain 

Thus, from equations (13)-( 16), we find that the mass equation is balanced to first order: 

Finally, using the same type of analysis one can show that (1 1) also holds to leading 
order. Again, in showing this one needs R, = 477*. 

As noted by Kaup and Newell in other studies [6, 7, 111, the conservation laws 
can be used to derive the slow variations in the soliton parameters. Newell points out 
that the higher-order conservation laws do not give any new information [ 111. In the 
next section we will use these conservation laws to obtain the results for the perturbed 
K d v  equation (1). However, none of the conservation laws provides the first-order 
correction to the velocity in equation (4). In the last section we will use a similar 
method in order to obtain this correction. 

3. General leading-order results 

We begin with the conservation of mass equation (9).  Letting U = uo+ &ul, we have to 
leading order 

( u , + E u , )  dx+O(E2).  
d t  
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We can bring the time derivative under the integral of the soliton part. The first-order 
solution consists, in general, of an oscillatory tail behind the soliton, a decaying part 
in front of the soliton and a possible shelf, such as we had seen in equation (14). The 
major contribution to the integral would come from the shelf, which we assume extends 
from x = 0 to x = 2( t ) .  Assuming that the soliton parameters vary on a slow timescale 
T = Et, the conservation equation can be approximated as 

as in equation (16). Carrying out the integration over the soliton part gives 

where we have used the leading-order velocity 2, = 4 ~ ~ .  We note that this is just another 
form of the mass balance equation (16), which we had obtained for the damped case 
above. 

A similar analysis can be carried out for the energy integral. In this case the first 
order correction, u1 , does not enter to leading order in E. We have 

X 

E I-, uP[u] dx 

Inserting the soliton part and integrating gives 
X 

47777, = 5 P[  uo] sech' 4 d 4  + O(E) .  
-X 

At this point we see that there are two expressions for 4 7 7 ~ ~ .  The one given by (22) 
is the usual expression leading to the evolution of the soliton amplitude [3]. Subtracting 
this from (20) yields 

Thus, we have obtained an expression for the amplitude of the shelf. For the damped 
Kdv, we again find the shelf amplitude (see (14)) 

1 "  r 
477 377 

~ ( 2 )  =y [-2r77* sech' 41 tanh2 9 d 9  = --. 

We still do not have an expression for the time dependence of the phase. We can 
look at the third conservation law ( 1  1). Writing this out, we have 

X 

U* dx = 16v3+0(&) .  (25) dt  

Writing the phase as 

we have 

xu dx  = jX $ [ 4 + 77 (a xo + x,)]  uo, = 477x0, + O ( E ) .  (27) -" 77 d t  
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The leading-order contribution gives 

xo, = 477’. 

(Note: this is consistent with the value used above for the leading-order velocity, 
f, = 472.) 

4. First-order correction to the velocity 

We now turn to the first-order correction to the soliton velocity, which is given in 
equations (3) and (4). Both of these results contain the integral 

oc 1 P[ U][ 4 sech2 4 + tanh 41 d4.  
-oc 

In parallel to the derivations of the above modified conservation laws, we multiply 
the perturbed Kdv equation by 4 sech’ 4 + tanh 4 and integrate. Namely, we begin with 

1 P [ u o ] [ 4  sech’ 4 +tanh 41 d 4  
X 

-X 

30 

= [U, - 4 ~ 7 ~ ~ ~  +377(u2)+ + 7‘u4,,][tanh 4 + 4 sech’ 41 d4.  (30) 
--cc 

Integrating by parts and noting that u1 is orthogonal to uo [3], 
a 

u1 sech’ 4 d 4  = 0 

we have 
-cc 

473x17 = I-m d4[tanh 4 + 4 sech’ 4]P1 + 4 ~ ~ u ,  tanh 4 1:. (32) 

Using the results (22), (23), and (28) from the above analyses, we obtain in the region 
for tanh’ 4 = 1, 

X 

4q3x1, i= j--cc d 4  P[ u o ] [ 4  sech’ 4 + tanh 4 + tanh’ 41. (33) 

This result, combined with the leading-order velocity in equation (28), leads to the 
non-adiabatic value in equation (4). 

5. Discussion 

Summarizing these results, we have used the conservation laws plus an integration of 
the perturbed Kdv equation, which was weighted by tanh 4 + 4 sech’ 4, to obtain the 
slow time variation of the soliton parameters and the shelf height. The correction to 
the adiabatic value in (3) is easily seen to be due to the presence of the shelf, through 
the use of equations (23) and (32). Furthermore, this is an asymptotic result, as we 
have approximated the tanh 4 in (32). We have shown in [2] that this result is supported 
by numerical experiment. 
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The use of the above weight is not as appealing as the use of conservation laws. 
At this point the integration in equation (30) is only suggested by the known results 
from some other direction; for example, there might be some other useful conservation 
law for the perturbed equation. To date the author has not found such a law. The fact 
that we must resort to such contortions to obtain useful information for an equation 
such as the perturbed K d v  equation, leads us to be cautious when we make 'judicious 
use of conservation laws'. 
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